Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells.
نویسندگان
چکیده
Morphological studies have provided ample evidence for synaptic connections between cerebellar Purkinje cells (PCs), but the functional properties of these synapses remain elusive. We report on direct recordings of synaptically connected PCs in mice cerebellar slices. In PCs filled with a fluorescent dye to aid axon visualization and postsynaptic target identification, presynaptic action potentials elicited unitary inhibitory postsynaptic currents in neighboring PCs in 10% of potential connections tested. In 11 pairs, postsynaptic currents had a delay onset of 1.62 +/- 0.16 ms with respect to the presynaptic spike, a 10-90% rise time of 2.20 +/- 0.33 ms, and a monoexponential decay with a time constant of 13.3 +/- 1.7 ms. Average values for peak current and variance-to-mean ratio were 55 +/- 14 and 30 +/- 3 pA, respectively. In contrast to the depressing nature of the synapse between PCs and deep cerebellar nuclei neurons, PC-PC synapses exhibited strong facilitation operating within a time window of a few milliseconds; paired-pulse ratios for 3- and 20-ms intervals were 1.79 +/- 0.18 and 1.01 +/- 0.14, respectively (n = 6). The facilitation is of presynaptic nature because it is accompanied by a decrease in failure rate. Trains of action potentials evoked in presynaptic varicosities volume-averaged calcium transients whose peak increased 1.7-fold as the frequency increased from 50 to 166 Hz. We suggest that PC-PC synapses are tuned for high fidelity of transmission during bursts of PC activity and that their operation in the cerebellar circuit modulates synchronized PC firing.
منابع مشابه
Subcellular structural plasticity caused by the absence of the fast Ca2+ buffer calbindin D-28k in recurrent collaterals of cerebellar Purkinje neurons
Purkinje cells (PC) control spike timing of neighboring PC by their recurrent axon collaterals. These synapses underlie fast cerebellar oscillations and are characterized by a strong facilitation within a time window of <20 ms during paired-pulse protocols. PC express high levels of the fast Ca(2+) buffer protein calbindin D-28k (CB). As expected from the absence of a fast Ca(2+) buffer, presyn...
متن کاملPurkinje Cell Collaterals Enable Output Signals from the Cerebellar Cortex to Feed Back to Purkinje Cells and Interneurons
Purkinje cells (PCs) provide the sole output from the cerebellar cortex. Although PCs are well characterized on many levels, surprisingly little is known about their axon collaterals and their target neurons within the cerebellar cortex. It has been proposed that PC collaterals transiently control circuit assembly in early development, but it is thought that PC-to-PC connections are subsequentl...
متن کاملCerebellar Culture Models of Dendritic Spine Proliferation After Transplantation of Glia
Studies of Purkinje cell dendritic spine proliferation after transplantation of cytosine arabinoside (Ara C) treated organotypic cerebellar cultures with glia and granule cells, either separately and in combination, were reviewed. Exposure of cerebellar explants to Ara C for the first 5 days in vitro results in the destruction of granule cells, the only excitatory cortical neurons, and oligoden...
متن کاملCurrent source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input.
The overall circuitry of the cerebellar cortex has been known for over a century, but the function of many synaptic connections remains poorly characterized in vivo. We used a one-dimensional multielectrode probe to estimate the current source density (CSD) of Crus IIa in response to perioral tactile stimuli in anesthetized rats and to correlate current sinks and sources to changes in the spike...
متن کاملDifferential susceptibility to synaptic plasticity reveals a functional specialization of ascending axon and parallel fiber synapses to cerebellar Purkinje cells.
Granule cell axons, via their parallel fibers, form synapses with Purkinje cells across large areas of the cerebellar cortex. Evidence for uniform transmission along parallel fibers to Purkinje cells is controversial, however, leading to speculation that the ascending axonal segment plays a dominant role in cerebellar processing. We have compared the relative susceptibilities of ascending axon ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 45 شماره
صفحات -
تاریخ انتشار 2007